Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 8(1)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36975318

RESUMO

With the advancement of artificial intelligence technologies in recent years, research on intelligent robots has progressed. Robots are required to understand human intentions and communicate more smoothly with humans. Since gestures can have a variety of meanings, gesture recognition is one of the essential issues in communication between robots and humans. In addition, robots need to learn new gestures as humans grow. Moreover, individual gestures vary. Because catastrophic forgetting occurs in training new data in traditional gesture recognition approaches, it is necessary to preserve the prepared data and combine it with further data to train the model from scratch. We propose a Multi-scopic Cognitive Memory System (MCMS) that mimics the lifelong learning process of humans and can continuously learn new gestures without forgetting previously learned gestures. The proposed system comprises a two-layer structure consisting of an episode memory layer and a semantic memory layer, with a topological map as its backbone. The system is designed with reference to conventional continuous learning systems in three ways: (i) using a dynamic architecture without setting the network size, (ii) adding regularization terms to constrain learning, and (iii) generating data from the network itself and performing relearning. The episode memory layer clusters the data and learns their spatiotemporal representation. The semantic memory layer generates a topological map based on task-related inputs and stores them as longer-term episode representations in the robot's memory. In addition, to alleviate catastrophic forgetting, the memory replay function can reinforce memories autonomously. The proposed system could mitigate catastrophic forgetting and perform continuous learning by using both machine learning benchmark datasets and real-world data compared to conventional methods.

2.
Sci Rep ; 12(1): 16222, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171213

RESUMO

Dynamic locomotion is realized through a simultaneous integration of adaptability and optimality. This article proposes a neuro-cognitive model for a multi-legged locomotion robot that can seamlessly integrate multi-modal sensing, ecological perception, and cognition through the coordination of interoceptive and exteroceptive sensory information. Importantly, cognitive models can be discussed as micro-, meso-, and macro-scopic; these concepts correspond to sensing, perception, and cognition; and short-, medium-, and long-term adaptation (in terms of ecological psychology). The proposed neuro-cognitive model integrates these intelligent functions from a multi-scopic point of view. Macroscopic-level presents an attention mechanism with short-term adaptive locomotion control conducted by a lower-level sensorimotor coordination-based model. Macrosopic-level serves environmental cognitive map featuring higher-level behavior planning. Mesoscopic level shows integration between the microscopic and macroscopic approaches, enabling the model to reconstruct a map and conduct localization using bottom-up facial environmental information and top-down map information, generating intention towards the ultimate goal at the macroscopic level. The experiments demonstrated that adaptability and optimality of multi-legged locomotion could be achieved using the proposed multi-scale neuro-cognitive model, from short to long-term adaptation, with efficient computational usage. Future research directions can be implemented not only in robotics contexts but also in the context of interdisciplinary studies incorporating cognitive science and ecological psychology.


Assuntos
Robótica , Adaptação Fisiológica , Cognição , Simulação por Computador , Locomoção
3.
IEEE Trans Cybern ; 52(8): 7981-7994, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33635813

RESUMO

This article examines the importance of integrating locomotion and cognitive information for achieving dynamic locomotion from a viewpoint combining biology and ecological psychology. We present a mammalian neuromusculoskeletal model from external sensory information processing to muscle activation, which includes: 1) a visual-attention control mechanism for controlling attention to external inputs; 2) object recognition representing the primary motor cortex; 3) a motor control model that determines motor commands traveling down the corticospinal and reticulospinal tracts; 4) a central pattern generation model representing pattern generation in the spinal cord; and 5) a muscle reflex model representing the muscle model and its reflex mechanism. The proposed model is able to generate the locomotion of a quadruped robot in flat and natural terrain. The experiment also shows the importance of a postural reflex mechanism when experiencing a sudden obstacle. We show the reflex mechanism when a sudden obstacle is separately detected from both external (retina) and internal (touching afferent) sensory information. We present the biological rationale for supporting the proposed model. Finally, we discuss future contributions, trends, and the importance of the proposed research.


Assuntos
Robótica , Animais , Locomoção/fisiologia , Mamíferos , Reflexo/fisiologia , Medula Espinal/fisiologia
4.
Front Robot AI ; 8: 562524, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912592

RESUMO

There are currently many quadruped robots suited to a wide range of applications, but traversing some terrains, such as vertical ladders, remains an open challenge. There is still a need to develop adaptive robots that can walk and climb efficiently. This paper presents an adaptive quadruped robot that, by mimicking feline structure, supports several novel capabilities. We design a novel paw structure and several point-cloud-based sensory structures incorporating a quad-composite time-of-flight sensor and a dual-laser range finder. The proposed robot is equipped with physical and cognitive capabilities which include: 1) a dynamic-density topological map building with attention model, 2) affordance perception using the topological map, and 3) a neural-based locomotion model. The novel capabilities show strong integration between locomotion and internal-external sensory information, enabling short-term adaptations in response to environmental changes. The robot performed well in several situations: walking on natural terrain, walking with a leg malfunction, avoiding a sudden obstacle, climbing a vertical ladder. Further, we consider current problems and future development.

5.
IEEE Trans Neural Netw Learn Syst ; 29(4): 1058-1068, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28182559

RESUMO

Quantum-inspired computing is an emerging research area, which has significantly improved the capabilities of conventional algorithms. In general, quantum-inspired hopfield associative memory (QHAM) has demonstrated quantum information processing in neural structures. This has resulted in an exponential increase in storage capacity while explaining the extensive memory, and it has the potential to illustrate the dynamics of neurons in the human brain when viewed from quantum mechanics perspective although the application of QHAM is limited as an autoassociation. We introduce a quantum-inspired multidirectional associative memory (QMAM) with a one-shot learning model, and QMAM with a self-convergent iterative learning model (IQMAM) based on QHAM in this paper. The self-convergent iterative learning enables the network to progressively develop a resonance state, from inputs to outputs. The simulation experiments demonstrate the advantages of QMAM and IQMAM, especially the stability to recall reliability.

6.
Chaos ; 27(12): 123104, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29289038

RESUMO

This paper is concerned with synchronization control of a multiplex network, in which two different kinds of relationships among agents coexist. Hybrid coupling, including continuous linear coupling and impulsive coupling, is proposed to model the coexisting distinguishable interactions. First, by adding impulsive controllers on a small portion of agents, local synchronization is analyzed by linearizing the error system at the desired trajectory. Then, global synchronization is studied based on the Lyapunov stability theory, where a time-varying coupling strength is involved. To further deal with the time-varying coupling strength, an adaptive updating law is introduced and a corresponding sufficient condition is obtained to ensure synchronization of the multiplex network towards the desired trajectory. Networks of Chua's circuits and other chaotic systems with double layers of interactions are simulated to verify the proposed method.

7.
IEEE Trans Neural Netw Learn Syst ; 27(10): 2035-46, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26340787

RESUMO

An accurate and noninvasive stress assessment from human physiology is a strenuous task. In this paper, a pattern recognition system to learn complex correlates between heart rate variability (HRV) features and salivary stress biomarkers is proposed. Using the Trier social stress test, heart rate and salivary measurements were obtained from volunteers under varying levels of stress induction. Measurements of salivary alpha-amylase and cortisol were used as objective measures of stress, and were correlated with the HRV features using fuzzy ARTMAP (FAM). In improving the predictive ability of the ARTMAPs, techniques, such as genetic algorithms for parameter optimization and voting ensembles, were employed. The ensemble of FAMs can be used for predicting stress responses of salivary alpha-amylase or cortisol using heart rate measurements as the input. Using alpha-amylase as the stress indicator, the ensemble was able to classify stress from heart rate features with 75% accuracy, and 80% accuracy when cortisol was used.


Assuntos
Biomarcadores , Frequência Cardíaca , Redes Neurais de Computação , Teste de Esforço , Humanos , Hidrocortisona , Saliva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...